
U	N	C	L	A	S	S	I	F	I	E	D			P	U	B	L	I	C	

	
	
VALCRI	WHITE	PAPER	SERIES	
VALCRI-WP-2017-001	
1	January	2017	
Edited	by	B.L.	William	Wong	

	
	
Architecture,	Development	and	Testing	Environment	for	a		
Visual	Analytics-based	Criminal	Intelligence	Analysis	System	
	
Rani	Pinchuk1,	Nick	Evers1,	Christophe	Vandenberghe1.	
Patrick	Aichroth2,	Rudolf	Schreiner3,	and	B.L.	William	Wong4	
	
1Space	Applications	Services	NV/SA	
Leuvensesteenweg,	325,		
1932	Zaventem,		
BELGIUM		
	
2Fraunhofer	Institute	for	Digital	Media	Technology	
Ehrenbergstraße	31	
98693	Ilmenau	
GERMANY		

	
3Object	Security,	Ltd	
St	John’s	Innovation	Centre	
Cowley	Road	
Cambridge	CB4	0WS		
UNITED	KINGDOM	
	
4Middlesex	University	London	
The	Burroughs,	Hendon	
London	NW4	4BT	
UNITED	KINGDOM	

	
Project	Coordinator	
Middlesex	University	London	
The	Burroughs,	Hendon	
London	NW4	4BT	
United	Kingdom.	
	

	
Professor	B.L.	William	Wong	
Head,	Interaction	Design	Centre	
Faculty	of	Science	and	Technology	
Email:	w.wong@mdx.ac.uk	

 
	
Copyright	©	2016	The	Authors	and	Project	VALCRI.	All	rights	reserved.		
	 	



U	N	C	L	A	S	S	I	F	I	E	D			P	U	B	L	I	C	
 

 
 
 

2	

	
	
	
	
	

ABSTRACT	
The	VALCRI	 architecture	 is	 built	 from	different	Docker	 containers	 that	 speak	with	 each	 other	 using	

mostly	REST	 interfaces.	The	architecture	 is	designed	 to	 incorporating	Security,	Ethics,	Privacy	and	Legal	
(SEPL)	solutions.	The	data	stores	–	the	Unstructured	Database	(UDB)	and	the	Structured	database	(SDB)	–	
used	 are	 controlled	 by	 SEPL	 Enforcement	 components	 and	 a	 Template	 Engine	manages	 the	 previously	
checked	and	accepted	query	templates	that	can	be	sent	to	the	data	stores.	The	Advanced	User	Interface	
(AUI)	server	is	also	designed	with	SEPL	in	mind:	a	Jetty	(Java	HTTP	server	and	Java	Servlet	container)	in-
stance	is	created	per	user	by	a	Jetty	Lifecycle	Management	component.	Each	such	instance	lives	inside	a	
Docker	container	to	promote	isolation.	The	Jetty	instance	hosts	the	mid-tier	services,	serves	the	front-end	
JavaScript	code	and	manages	the	communication	between	the	mid-tier	services	and	the	 front-end.	The	
midtier	services	are	written	in	java	and	front-end	components	are	implemented	using	GWT	–	Google	Web	
Toolkit.	The	Model	View	Presenter	(MVP)	design	pattern	is	implemented.	The	SEPL	Enforcement	compo-
nents,	as	well	as	the	analysis	components,	and	the	Jetty	Containers	communicate	to	the	CAS	(Central	Au-
thentication	 Service)	 component	 to	 ensure	 that	 only	 authorized	users	 can	perform	 certain	 actions	 and	
allows	 data	 to	 be	 properly	 restricted.	 The	 user	management	 of	 the	 CAS	 component	 is	 linked	with	 the	
LDAP	 (Lightweight	Directory	Access	Protocol)	 component	 to	manage	and	authenticate	user	credentials.	
All	the	components	may	use	the	interface	exposed	by	the	GrayLog	component,	ensuring	that	any	action	
done	by	any	component	can	be	logged	in	the	logging	storage.	

Systematic	system	integration	is	a	key	principle	for	the	success	of	VALCRI	and	for	that	a	development	
pipeline	was	designed.	This	pipeline	aims	to	provide	continuous	system	integration	while	promoting	col-
laboration,	 contributions,	quick	 feedback	 to	contributions,	 changing	and	evolving	 interfaces,	and	above	
all	respecting	the	principle	of	“keep	it	working”	–	allowing	to	introduce	many	contributions	in	small	steps	
while	the	system	continues	to	compile	and	work.	The	GIT	Source	Control	Management	(SCM)	platform	is	
used	for	keeping	track	of	changes	in	the	source	code.	It	is	accompanied	by	a	GitLab	installation	that	pro-
vides	a	user	interface	that	allows	managing	the	user	accounts	and	the	individual	code	repositories.	In	or-
der	to	compile	and	build	the	code	available	from	the	SCM,	a	custom	build	system	was	developed	using	
Gradle.	The	Gradle	setup	is	also	accompanied	with	a	Nexus	component	–	an	artefact	repository	–	which	
hosts	all	the	compiled,	binary	VALCRI	system	components.	For	each	change	in	the	SCM,	the	source	code	is	
automatically	 rebuilt	and	all	 tests	are	 run.	 In	order	 to	do	 this,	a	 Jenkins	 installation	was	put	 into	place.	
Because	the	VALCRI	architecture	includes	many	services	working	on	different	environments,	Docker	was	
selected	to	allow	building,	shipping	and	running	the	complete	environments.	
	

Keywords	
Visual	Analytics,	Sense-Making,	Criminal	Intelligence	Analysis,	Architecture,	REST,	Security,	Ethics,	Pri-

vacy	and	Legal	(SEPL),	Model	View	Presenter,	Isolation,	Google	Web	Toolkit	(GWT),	Errai,	Docker	contain-
ers,	Central	Authentication	Service	(CAS),	LDAP,	GrayLog,	GIT,	Gradle,	Nexus,	Jenkins	

	
	
	
	
	
	
	
	
	
	
	



U	N	C	L	A	S	S	I	F	I	E	D			P	U	B	L	I	C	
 

 
 
 

3	

	
	
	
	

I N T E N T I O N A L L Y 	 B L A N K 	
	
 	



U	N	C	L	A	S	S	I	F	I	E	D			P	U	B	L	I	C	
 

 
 
 

4	

INTRODUCTION		
VALCRI	 –	 Visual	 Analytics	 for	 sense-making	 in	 Criminal	

Intelligence	Analysis	 –	once	 completed,	will	 be	a	TRL	5	 la-
boratory	 prototype	 that	 has	 been	 validated	 in	 an	 opera-
tional	environment.	In	VALCRI	we	apply	concepts	and	prin-
ciples	 from	 visual	 analytics	 (Thomas	&	 Cook,	 2004)	 to	 de-
velop	a	system	that	facilitates	human	reasoning	and	analyt-
ic	 discourse,	tightly	 coupled	 with	 semi-automated	human-
mediated	semantic	knowledge	extraction	capabilities.	

During	 the	 project,	 VALCRI	 partners	 will	 research	
and	develop	a	 semantic	data	mining	engine	 informed	by	a	
self-evolving	 crime	ontology.	 This	 semantic	 extraction	 en-
gine	will	 semi-automatically	identify	 interesting	 crime	con-
cepts,	extract	them,	and	then	make	 it	available	to	the	sys-
tem	so	that	these	concepts	may	be	used	by	the	system	to	
enable	 further	 searches	 based	 on	 document	 similarity	 or	
provide	the	analyst	with	brief	descriptions	of	what	a	docu-
ment	or	set	of	similar	documents	are	about.	The	extracted	
concepts	can	also	be	used	by	the	analysts	will	also	be	able	
to	 specify	 or	 direct	 further	 searches.	 VALCRI	 will	 also	 in-
clude	 an	 associative	search	 capability	 to	 discover	 un-
anticipated	 relationships,	 or	 relationships	 that	 may	 exist	
between	 data	 that	 can	 only	 be	 discovered	 by	 combining	
data	from	several	different	data	sets.		It	is	intended	for	the	
ontology	 to	 be	 updated	 as	 new	 terms	 or	 concepts	 are	 in-
troduced	to	the	system.	In	this	way	the	system	learns,	with	
the	evolving	ontology	guiding	subsequent	semantic	search-
es.			

VALCRI	 will	 also	 provide	 functionality	 to	 analyse	 the	
temporal	evolution	 of	criminal	 networks.	 Such	 analytical	
tools	 will	 enable	 analysts	 to	 understand	 how	 known	 rela-
tionships	 and	 their	 effect	 on	 the	 community	 change	 over	
time.		

In	 terms	of	security,	data	access	will	be	protected	by	a	
fine	grained	access	control	capability	based	on	both	Attrib-
ute-based	 Access	 Control	 (ABAC)	 and	 Proximity-based	 Ac-
cess	 Control	 (PBAC).	 This	 fine	 grained	 access	 control	 will	
enable	 complex	 and	 specific	 settings	 to	 be	 set	 to	 ensure	
that	 security	 requirements	 are	 addressed.	 It	 is	 comple-
mented	 by	 Secure	 Logging	 for	 transactions,	 which	 allows	
ex-post	control	of	actions,	and	by	Privacy	Enhancing	Tech-
nologies	(PET),	all	of	which	together	are	capable	of	address-
ing	 various	 Security,	 Ethical,	 Privacy	 and	 Legal	 (SEPL)	 re-
quirements.	

The	 aforementioned	 technologies	will	 be	 implemented	
through	 a	 configuration	 management	 system,	 OpenPMF,	
the	 Open	 Policy	 Management	 Framework	 (a	 patented	
technology	 developed	 by	 partner	 Object	 Security	 Ltd),	
based	on	the	concepts	of	Model	Driven	Security.	Using	this	
approach,	 human-readable	 high-level	 policies	 regarding	
SEPL	 (Security,	Ethics,	Privacy	and	Legal)	 requirements	are	
mapped	to	machine-usable	low-level	enforcement	rules	for	
the	different	SEPL	technologies.			

The	 VALCRI	 user	 interface	 will	 be	 operated	 by	 tactile	
reasoning	(Takken	&	Wong,	2015),	an	interaction	technique	

that	 supports	 sense	making	 by	 the	 direct	manipulation	 of	
information	objects	in	the	user	interface.	When	one	is	pre-
sented	with	a	set	of	information	that	can	be	freely	moved,	
manipulated,	 grouped	 and	 re-arranged	 in	 a	 visuospatial	
manner,	 this	 interaction	 method	 can	 help	 us	 discover	
meanings	or	relationships.	Such	actions	are	externalisations	
of	our	mental	processes	and	have	been	referred	to	as	epis-
temic	 actions	 (Kirsch	&	Maglio,	 1994).	 Such	a	method	will	
be	 used	 to	 support	 the	 assembly	 of	 evidence	 to	create	 a	
case	 based	 on	 argumentation	 theory	 and	 eviden-
tial	reasoning	for	the	rigorous	treatment	of	data	and	infer-
ences.	

VALCRI	 will	 also	 include	 functionality	 for	 address-
ing	cognitive	 bias,	 the	 use	 of	 ethically	 sensitive	 data,	 and	
complying	 with	 legal	 frameworks,	 methods	and	 da-
ta	models	for	tracking	and	storing	data,	process	and	analyt-
ic	provenance.	Such	functionality	will	be	embedded	within	
the	 system	 architecture.	 Where	 this	 is	 not	 possible,	 con-
trols	 and	 protection	 mechanisms	 such	 as	 procedures	 to	
cope	with	 incidental	 findings	will	be	 incorporated	 into	 the	
socio-organisation	structures	in	which	VALCRI	will	operate.	

VALCRI	 is	 intended	to	support	a	various	criminal	 intelli-
gence	analysts’	 tasks,	 ranging	 from	strategic	analysis	 func-
tions	such	as	statistical	analysis	and	crime	pattern	analysis,	
to	 the	 support	 of	 individual	 crime	 investigations.	 The	 sys-
tem	 user	 interface	 will	 be	 designed	 to	 support	 seamless	
transitions	between	aggregated	views	to	views	showing	the	
data	within	 individual	 records.	This	will	 enable	 the	analyst	
to	work	with	 the	 lowest	 level	 of	 detail	 and	 yet	be	able	 to	
persistently	access	the	situational	context.	This	is	important	
for	interpreting	data	and	sense-making.	

In	 the	 following	pages	we	describe	 the	 technical	 archi-
tecture	 and	 the	 technology	 stack	 we	 have	 constructed	 to	
support	the	functionality	briefly	described	above.		

	

THE	SYSTEM	ARCHITECTURE	
The	VALCRI	architecture	(Figure	1)	is	built	from	different	

Docker	containers	that	speak	with	each	other	using	mostly	
REST	 interfaces.	 In	 the	diagram	below	we	can	 see	 the	dif-
ferent	Docker	containers	(blue	rounded	rectangles).	Nested	
containers	 are	 used	within	 some	 of	 these	 containers	 (e.g.	
Jetty	or	ES).			

A	great	deal	of	attention	was	spent	to	incorporating	Se-
curity,	Ethics,	Privacy	and	Legal	 (SEPL)	solutions.	SEPL	con-
siderations	 are	 taken	 throughout	 the	 architecture	 of	
VALCRI.	As	an	example,	the	SEPL	Enforcement	components	
control	all	access	to	persisted	data.		

The	data	that	is	ingested	by	the	Ingester,	or	that	is	pro-
vided	by	the	user	through	the	user	interface,	is	kept	in	the	
Unstructured	Database	(UDB)	and	the	Structured	Database	
(SDB).	The	UDB	keeps	binary	data	(e.g.	video	or	audio	files).	
The	SDB	keeps	structured	data,	for	example,	police	reports	
which	 include	well	 defined	 fields.	 Note	 that,	 unstructured	
text	 is	usually	kept	 in	the	SDB	as	well	–	for	example,	a	po-



U	N	C	L	A	S	S	I	F	I	E	D			P	U	B	L	I	C	
 

 
 
 

5	

lice	 report	 may	 contain	 structured	 data	 such	 as	 address	
(street	 name,	 number,	 etc.),	 dates,	 or	 information	 about	
the	 person	 that	 prepared	 the	 report.	 In	 addition,	 it	 may	

contain	unstructured	text,	such	as	a	field	that	contains	the	
description	of	the	event	reported.	

	
	

	
 

Figure	1.	The	VALCRI	multi-tier	system	architecture	

 
 

The	SDB	involves	a	SPARQL	server	-	Apache	Jena	Fuseki,	
and	a	multitude	of	Elasticsearch	(ES)	instances.	Fuski	is	used	
for	persistency,	while	Elasticsearch	provides	quick	searches	
through	 the	data	allowing	high	 responsiveness	 from	 inter-
active	visualizations.		

The	SEPL	Enforcement	 component	dispatches	 the	que-
ries	 to	 Fuseki	or	 to	ES.	 To	enforce	SEPL,	 the	Template	En-
gine	manages	 the	 previously	 checked	 and	 accepted	 query	
templates	that	can	be	sent	to	Fuseki.	SEPL	 is	applied	to	ES	
by	confining	the	indexed	data	for	each	user.	In	other	words,	
a	 specific	 ES	 index	 is	 created	 per	 user	 to	 ensure	 that	 the	
user	 can	 only	 explore	 the	 data	 he/she	 is	 allowed	 to	 see.	
These	ES	instances	are	created	by	the	ES	lifecycle	manage-
ment	 component.	 To	 avoid	 duplicated	 ES	 indexes	 (that	 is,	
when	a	few	users	are	allowed	to	see	the	same	data),	the	ES	
lifecycle	management	implements	the	Proxy	Design	Pattern	
(Gamma	et	al,	1994).	The	queries	to	ES	as	well	as	the	out-
put	 of	 the	 ES	 queries	 pass	 through	 the	 SEPL	 Enforcement	
component,	allowing	for	extra	checks	if	needed.	

As	 said,	 in	 the	 same	manner	 to	 the	 SDB,	 the	 UDB	 in-
cludes	 a	 SEPL	 Enforcement	 component.	 The	 ObjectStore	
component	 is	 a	 service	 for	 storing	 binary	 data.	 It	 is	 inte-
grated	with	OpenPMF	to	allow	access	control	which	 is	en-
forced	 using	 policies.	 These	 policies	 are	 defined	 using	 a	
user-friendly	 API.	 The	 ObjectStore	 is	 using	 and	 controls	 a	
MongoDB	instance	for	persistency.		

The	Textual	Analysis	component	processes	unstructured	
text.	 It	gets	 its	 input	 from	the	SDB,	and	persists	 its	output	
results	 back	 to	 the	 SDB.	 For	 example,	 processing	 an	 un-
structured	text	description	of	a	crime	report	might	result	in	
the	extraction	of	person	names	which	are	then	saved	back	
to	the	SDB	as	metadata	linked	to	the	crime	report.	

The	Audio/Video	analysis	component	gets	its	input	from	
the	 UDB,	 and	 outputs	 the	 results	 back	 to	 the	 UDB	 (e.g.	
anonymized	videos)	as	well	as	the	SDB	(e.g.	semantics	iden-
tified	in	the	videos).		

The	Advanced	User	 Interface	(AUI)	 is	a	web	based	user	
interface.	It	includes	advanced	and	integrated	visual	analyt-



U	N	C	L	A	S	S	I	F	I	E	D			P	U	B	L	I	C	
 

 
 
 

6	

ics	 views	 that	enable	 the	user	 to	better	 interact	and	navi-
gate	through	the	data	using	visualizations.	

The	AUI	server	is	also	designed	with	SEPL	in	mind:	a	Jet-
ty	(Java	HTTP	server	and	Java	Servlet	container)	instance	is	
created	 per	 user	 by	 the	 Jetty	 Lifecycle	Management	 com-
ponent.	Each	such	 instance	 lives	 inside	a	Docker	container	
to	 promote	 isolation.	 This	 ensures	 that	 a	 security	 issue	 in	
one	of	the	components	running	in	Jetty,	or	a	security	issue	
in	Jetty	itself,	does	not	allow	a	malicious	user	to	access	the	
information	of	other	users.	

A	 Jetty	 instance	hosts	 the	mid-tier	 services,	 serves	 the	
front-end	JavaScript	code	and	manages	the	communication	
between	the	mid-tier	services	and	the	front-end.	The	mid-
tier	services	are	written	 in	 java	and	front-end	components	
are	 implemented	 using	 GWT	 –	 Google	 Web	 Toolkit	 –	 to	
enable	 front-end	 Java	development.	The	 front-end	code	 is	
trans-compiled	 to	 JavaScript	 by	 the	 GWT	 compiler.	 Jetty	
sends	the	compiled	JavaScript	code	to	the	browser	running	
on	 the	 user	 client.	 The	 communication	 between	 the	mid-
tier	 and	 front-end	 components	 is	 implemented	with	 Errai	
which	abstracts	away	the	communication	complexity.		

The	Model	View	Presenter	(MVP)	design	pattern	(Potel	
M,	1996)	is	implemented.	The	Views	are	the	visible	compo-
nents	 shown	 to	 user	 in	 the	 browser,	 e.g.	 a	 timeline.	 Each	
View	is	managed	by	a	Presenter	which	provides	the	neces-
sary	logic	to	present	the	data	in	the	respected	View	and	to	
process	the	user	interactions.	The	Model	is	the	data	shared	
between	 the	 Presenter	 and	 the	 Service	 and	 used	 by	 the	
communication	protocol	between	both.	The	transformation	
logic	of	getting	the	data	from	the	backend,	and	transform	it	
to	a	Model	that	can	be	presented,	is	done	by	the	respective	
Service.	

Each	mid-tier	service	defines	how	it	needs	to	communi-
cate	 with	 the	 backend	 components	 –	 the	 databases:	 SDB	
and	UDB,	and	with	the	analysis	components.	These	services	
communicate	 mostly	 with	 the	 user’s	 ES	 instance.	 As	 ex-
plained	 earlier,	 ES	 indexes	 the	 data	 from	 Fuseki	 and	 for	
each	 user	 profile	 another	 index	 is	 available.	 The	 mid-tier	
services	 can	 also	 communicate	 directly	 with	 the	 SDB	 or	
UDB	in	order	to	store	data	that	the	user	 inserted	or	to	ac-
cess	specific	data	that	is	not	available	in	the	ES	indexes.	

The	SEPL	Enforcement	components	(Access	Control,	Pri-
vacy	 Enhancing	 Technologies	 and	 Secure	 Logging)	 in	 the	
UDB	and	SDB	communicate	to	the	CAS	(Central	Authentica-
tion	 Service)	 component,	 and	 they	 are	 all	 governed	 by	 a	

common	 high-level	 policy	 based	 on	 the	 OpenPMF	 Policy	
Management	 Framework,	 thereby	 ensuring	 that	 only	 au-
thorized	 access	 is	 granted	 and	 that	 data	 is	 appropriately	
processed	before	access,	thereby	addressing	various	securi-
ty	 and	 privacy	 goals.	 In	 the	 same	 manner,	 the	 analysis	
components,	 and	 the	 Jetty	 Containers,	 communicate	with	
the	 CAS	 component.	 The	 user	 management	 of	 the	 CAS	
component	 is	 linked	with	 the	 LDAP	 (Lightweight	Directory	
Access	 Protocol)	 component	 to	 manage	 and	 authenticate	
user	credentials..		

All	 the	 components	may	 use	 the	 interface	 exposed	 by	
the	GrayLog	component,	ensuring	that	any	action	done	by	
any	component	can	be	logged	in	the	logging	storage.			

DEVELOPMENT	AND	TESTING	ENVIRONMENT	
As	a	consortium	of	18	partners,	10	of	which	contribute	

various	software	components,	 there	 is	a	strong	need	for	a	
development	and	testing	pipeline	that	ensures	the	interop-
erability	 and	 cooperation	 between	 each	 of	 the	 compo-
nents.	Therefore,	early	and	systematic	system	integration	is	
a	key	principle	for	the	success	of	VALCRI.	

For	this	purpose,	each	new	component	or	every	change	
to	 an	 existing	 component	 in	 the	 VALCRI	 system	 will	 pass	
through	a	processing	chain	whereby	each	stage	deals	with	a	
different	 integration	aspect	of	the	component	 in	question.	
This	 processing	 chain	 of	 is	more	 commonly	 referred	 to	 as	
the	development	and	testing	pipeline.	

This	 pipeline	 aims	 to	 provide	 continuous	 system	 inte-
gration	while	promoting	collaboration,	contributions,	quick	
feedback	 to	 contributions,	 changing	 and	evolving	 interfac-
es,	and	above	all	respecting	the	principle	of	“keep	it	work-
ing”	 –	 allowing	 to	 introduce	 many	 contributions	 in	 small	
steps	while	the	system	continues	to	compile	and	work.	

Note	that	there	is	a	subtle	trade-off	between	the	rigour	
and	 flexibility	 of	 the	 development	 process.	 On	 the	 one	
hand,	 the	development	and	testing	pipeline	must	be	 thor-
ough	in	order	to	enforce	system	stability.	But,	on	the	other	
hand,	 when	 the	 pipeline	 is	 too	 strict,	 it	might	 slow	 down	
quick	changes	or	additions.	

Figure	2	depicts	 the	 four	processing	stages	 from	which	
the	pipeline	is	built	up	from.	Each	stage	takes	care	of	a	dif-
ferent	aspect	of	the	process.	It	also	shows	how	a	developer	
can	 interact	 with	 the	 pipeline,	 and	 which	 stages	 are	 trig-
gered	in	response.	

	
	
	



U	N	C	L	A	S	S	I	F	I	E	D			P	U	B	L	I	C	
 

 
 
 

7	

 
 

Figure		2.	The	Four	processing	stages	of	the	development	pipeline	

 
 

The	GIT	Source	Control	Management	(SCM)	(https://git-
scm.com/)	platform	is	used	for	keeping	track	of	changes	in	
the	 source	 code.	 It	 is	 accompanied	 by	 a	 GitLab	
(https://about.gitlab.com/)	installation	that	provides	a	user	
interface	 that	 allows	managing	 the	 user	 accounts	 and	 the	
individual	 code	 repositories.	 The	 choice	 of	 using	 GIT	
seemed	to	be	the	most	natural	fit	as	it	features	for	decen-
tralising	the	code,	smooth	handling	of	branches	and	seam-
less	integration	with	other	development	tools	necessary	for	
VALCRI	software	development.		

In	 order	 to	 compile	 and	 build	 the	 code	 available	 from	
the	SCM,	a	custom	build	system	was	developed	using	Gra-
dle	 (https://gradle.org/).	 Gradle	 provides	 a	 Groovy	
(http://www.groovy-lang.org/)	 Domain	 Specific	 Language	
(DSL)	and	is	used	to	define	and	automate	all	the	details	for	
managing	and	building	the	VALCRI	system.	The	Gradle	set-
up	 is	 also	 accompanied	 with	 a	 Nexus	
(http://www.sonatype.org/nexus/)	 component	 or	 artefact	
repository	which	hosts	all	the	compiled,	binary	VALCRI	sys-
tem	components.	Together,	Gradle	and	Nexus	need	to	per-
form	the	bulk	of	 the	tasks	 in	 the	development	and	testing	

pipeline.	 Therefore,	 they	 have	 many	 requirements	 to	 ad-
here	to.	The	following	sections	will	 iterate	through	each	of	
those	requirements	and	discuss	how	they	were	fulfilled.		

Gradle		
Gradle	has	a	number	of	useful	and	important	features:	
Transitive	dependency	resolution	—	Gradle	can	resolve	

dependencies	 from	Maven	and	 Ivy	artefact	 repositories.	 It	
also	automatically	 traverses	down	the	dependency	 tree	 to	
fetch	 the	 dependencies	 and	 the	 dependencies	 of	 the	 de-
pendencies.		

Support	 for	Nexus	—	Nexus	 is	developed	by	Sonatype,	
the	company	behind	Maven.	Hence,	Nexus	is	a	fully	Maven-
compliant	artefact	repository	and	is	thus	well	supported	by	
Gradle.	

Support	 for	 build	 promotion	—	we	 have	 designed	 the	
Gradle	build	system	in	a	way	that	developers	only	need	to	
provide	 a	 component	 id	 and	 version.	 Gradle	 can	 then	 au-
tomatically	upload	the	component	to	Nexus.		

Allow	 for	maintenance	—	this	 is	one	 the	key	 strengths	
of	 Gradle	 as	 it	 is	 based	 on	 a	 JVM	 programming	 language	



U	N	C	L	A	S	S	I	F	I	E	D			P	U	B	L	I	C	
 

 
 
 

8	

named	Groovy.	As	a	result,	maintaining	the	build	system	is	
like	any	other	software	component	written	in	Groovy.		

Multiple	platform	support	—	besides	 the	requirements	
in	D2.3,	it	is	also	noteworthy	to	mention	the	fact	that	Gra-
dle	is	completely	Java	based.	This	means	that	it	can	operate	
on	any	OS	as	 long	as	 the	VALCRI	developer	has	 installed	a	
suitable	JVM.		

IDE	 support	—	 from	 the	very	beginning	of	 the	project,	
all	 technical	 members	 of	 the	 consortium	 agreed	 on	 using	
Eclipse	 as	 the	 default	 IDE.	 Gradle	 automatically	 generates	
the	 configuration	 files	 needed	 for	 importing	 the	 projects	
into	Eclipse.	However,	it	is	also	possible	to	use	other	IDE’s	if	
preferred.	

Nexus		
Nexus	has	the	following	useful	features:	
Allow	 continuous	 collaboration	 —	 using	 Gradle,	 a	 de-

veloper	can	checkout	or	create	a	new	software	component	
for	the	VALCRI	system	and	integrate	it	within	the	large	mul-
ti-component	 hierarchy	 without	 having	 to	 deal	 with	 the	
entire	source	tree.		

Streamlining	sharing	of	artefacts	—	developers	can	use	
Gradle	to	upload	a	compiled	VALCRI	software	components	
to	Nexus	in	order	to	share	it	with	others.		

Privacy	and	 security	—	each	partner	 can	choose	which	
components	 they	 want	 to	 share	 to	 whom.	 Furthermore,	
each	 partner	 has	 received	 a	 personal	 account	 to	 manage	
their	own	artefact	repository	in	Nexus.		

Speed	—	 the	 Nexus	 code	 repository	 hosts	 all	 the	 pre-
compiled	VALCRI	components.	VALCRI	developers	can	fetch	
these	 instead	of	having	to	recompile	all	of	the	VALCRI	sys-
tem	components	themselves.	This	drastically	speeds	up	the	
build	process.	

Reliability	 —	 release	 artefacts	 can	 only	 be	 uploaded	
once	to	the	repository,	so	they	are	guaranteed	to	stay	the	
same	over	 time.	 If	a	developer	wants	 to	change	a	compo-
nent,	he	has	to	increment	its	version	number	and	upload	a	
new	version	to	Nexus.	This	ensures	that	the	Gradle	can	still	
resolve	the	previous	versions	and	reliably	build	the	VALCRI	
system.	 It	 is	 the	 responsibility	 of	 the	 developer	 to	 then	
make	 sure	 that	 all	 components	 using	 the	 old	 version	 are	
upgraded	to	use	the	new	version.	For	better	development	
support,	 Nexus	 also	 allows	 to	 publish	 snapshot	 artefacts	
without	 the	 need	 to	 increment	 version	 numbers.	 Each	
change	to	a	library	in	development	can	be	pushed	as	a	new	
snapshot	 and	 consumed	 like	 a	 normal	 artefact.	 The	 only	
restriction	to	snapshots	is	that	they	can	never	be	part	of	a	
final	release	of	the	VALCRI	system.	

Backup	—	all	artefacts	uploaded	to	the	Nexus	reposito-
ries	are	automatically	backed	up.	

Integration	with	build	tools	—	As	discussed	above,	Gra-
dle	supports	Nexus	out	of	the	box.		

Multiple	component	types	—	Nexus	is	primarily	focused	
on	 Java	 artefacts	 (JAR	 files).	 This	 conforms	 to	 the	 overall	

focus	 of	 the	 consortium.	 It	 also	 supports	 plain	 ZIP	 files	
which	can	basically	contain	anything.		

For	 each	 change	 in	 the	 SCM,	 the	 source	 code	 is	 auto-
matically	rebuilt	and	all	tests	are	run.	In	order	to	do	this,	a	
Jenkins	 (https://jenkins-ci.org/)	 installation	 was	 put	 into	
place.	 Jenkins	 continuously	 polls	 for	 changes	 in	 the	 SCM.	
Upon	 each	 change,	 it	 runs	 a	 build	 and	 test	 cycle	 over	 the	
full	code	base.	Upon	any	failure,	it	will	send	an	email	to	the	
VALCRI	 developer	mailing	 list	 informing	 all	 technical	 part-
ners	about	the	failure.	JUnit	(http://junit.org/)	was	selected	
as	the	means	to	define	unit	tests	and	Selenium	to	run	inte-
gration	tests.		

Docker	
In	 VALCRI	 we	 have	 chosen	 Docker	

(https://www.docker.com/)	 as	 the	 primary	 tool	 to	 solve	
this	problem.	As	nicely	described	on	their	website,	Docker	
is	 a	 platform	 for	 building,	 shipping	 and	 running	 the	 com-
plete	 environment	 for	 distributed	 applications.	 It	 allows	
you	 to	 package	 your	 application	 and	 all	 its	 run-time	 de-
pendencies	 into	a	standardized	unit	of	deployment:	a	con-
tainer.	 Each	 container	 can	 thus	 wrap	 a	 VALCRI	 software	
component	 in	 a	 complete	 filesystem	 that	 contains	 every-
thing	 it	needs	 to	 run:	 the	executable	binary,	 system	tools,	
system	libraries	-	anything	you	can	install	and	execute	on	a	
server.	

Getting	the	VALCRI	system	up	and	running	while	provi-
sioning	it	with	the	correct	configuration	and	environment	is	
very	 complex.	 Even	 for	 small	 applications	 this	 can	 quickly	
become	complicated	and	 time	consuming	as	each	applica-
tion	has	 its	own	unique	set	of	 run-time	dependencies	and	
configuration	 files.	 These	 run-time	 dependencies	 are	 dif-
ferent	 from	 the	 compile-time	 dependencies	 that	 are	 re-
solved	by	the	build	system.	In	essence,	the	dependencies	of	
the	 build	 system	 are	 comprised	 of	 the	 internal	 VALCRI	
software	 components	 depending	 on	 each	 other	 and	 the	
software	libraries	they	are	built	from.	Even	though	the	de-
velopment	and	 testing	pipeline	 (refer	 to	D2.3	version	1)	 is	
able	 to	weave	 together	 all	 those	 compile-time	 dependen-
cies	 into	 one	 deployable	 and	 executable	 unit,	 this	 binary	
still	 has	 run-time	 dependencies	 to	 an	 operating	 system,	
networking	 and	 hardware	 facilities,	 logging,	 identity	man-
agement,	etc.	These	dependencies	are	usually	off-the-shelf	
services	 that	 are	managed	outside	VALCRI.	 Yet,	 they	need	
to	 be	 available	 and	 configured	 properly	 in	 order	 for	 the	
VALCRI	system	to	work	and	remain	secure.		

In	 this	 context,	 the	 term	 infrastructure	 represents	 all	
supported	 environments	 together	 with	 the	 services	 that	
support	 the	VALCRI	application.	The	process	 that	prepares	
the	 environment	 for	 deployment	 is	 the	main	 focus	of	 this	
section.	 The	 tool	 that	 implements	 this	 process	 for	 VALCRI	
should	adhere	to	the	following	requirements:	

Versioned	—	 the	 state	 of	 the	 infrastructure	 should	 be	
specified	 in	 a	 configuration	 file	 that	 is	 versioned	 in	 the	
Source	Control	Management	(SCM).	



U	N	C	L	A	S	S	I	F	I	E	D			P	U	B	L	I	C	
 

 
 
 

9	

Automatic	—	reestablishing	a	known	good	environment	
configuration	must	be	simple	and	fast.	Therefore,	run-time	
dependencies	 needed	 to	 run	 the	 VALCRI	 components	 and	
setup	the	complete	run-time	environment	should	be	auto-
matically	fetched.	This	is	also	a	necessary	condition	for	au-
tomating	 the	 process	 of	 integration,	 testing	 and	 deploy-
ment.	

Efficient	 —	 preparing	 the	 deployment	 environments	
should	be	 fast	 or	 at	 least	 a	 one-time	 cost.	 This	 allows	de-
velopers	to	keep	the	time	between	changing	the	code	and	
running	 the	 updated	 executable	 in	 their	 environment	 as	
short	as	possible.	Also,	the	tool	should	not	induce	a	signifi-
cant	 performance	 overhead	 when	 running	 the	 VALCRI	
components.	The	ultimate	goal	is	to	allow	VALCRI	develop-
ers	to	employ	commodity	hardware	for	most	scenarios.	

Modular	—	As	 the	VALCRI	architecture	 is	 comprised	of	
many	different	components,	the	tool	should	support	lifting	
those	 out	 and	 run	 and	 debug	 them	 in	 their	 own	 custom	
environment.	This	also	gives	unique	opportunities	in	terms	
of	 security	 as	 the	 individual	 VALCRI	 software	 components	
are	then	isolated	from	each	other	so	one	can	better	control	
the	data	flow	between	them.	

Interoperability	 —	 the	 tool	 should	 be	 able	 to	 run	 on	
both	Windows	and	Unix-based	platforms.	

CONCLUSION	
Several	 challenges	 that	 are	 derived	 by	 the	 project	 tar-

gets	 are	 tackled	 by	 the	 architecture.	 Visual	 analytic	 user	
interfaces	 require	 the	 user	 to	 interact	 with	 the	 visualiza-
tions	 and	 therefore	 the	 underlying	 analytics	must	 happen	
with	 minimal	 delays.	 On	 the	 other	 hand,	 complex	 con-
straints	are	put	into	place	in	order	to	ensure	that	the	SEPL	
issues	are	well	addressed.	In	support	of	this,	we	employed	
a	 software	 architecture	 using	 a	 combination	 of	 the	 latest	
development	approaches	for	advanced	user	interfaces	and	
container-based	software.	

The	VALCRI	project	challenges	the	development	process	
due	to	 its	high	complexity,	 large	size	and	 large	consortium	
of	 academic	 and	 industry	 partners	 spread	 around	 Europe.	
This	 challenge	 was	 met	 by	 the	 careful	 design	 and	 imple-
mentation	of	a	development	and	testing	pipeline.	
	

REFERENCES	
Gamma	E.,	Vlissides	 J.,	 Johnson	R.,	Helm	R.	 (1994).	Design	

Patterns:	 Elements	 of	 Reusable	 Object-Oriented	
Software.	

Kirsch,	D.,	&	Maglio,	P.	(1994).	On	distinguishing	epistemic	
from	 pragmatic	 action.	 Cognitive	 Science,	 18(4),	 513-
549.		

Potel	M	 (1996).	MVP:	Model-View-Presenter	 The	 Taligent	
Programming	Model	for	C++	and	Java.	Taligent,	Inc.	

Takken,	 S.,	 &	 Wong,	 B.	 L.	 W.	 (2015).	 Tactile	 reasoning:	
Hands-on	 vs.	 Hands-off	 -	 what's	 the	 difference?	
Cognition,	 Technology	 &	 Work,	 17(3),	 381-390.	
doi:10.1007/s10111-015-0331-5	

Thomas,	 J.	 J.,	 &	 Cook,	 K.	 (Eds.).	 (2004).	 Illuminating	 the	
path:	 A	 research	 and	 development	 agenda	 for	 Visual	
Analytics:	IEEE	CS	Press.	

	



U	N	C	L	A	S	S	I	F	I	E	D			P	U	B	L	I	C	
 

 
 
 

10	

	

	

The	 research	 leading	 to	 the	 results	 reported	 here	 has	 received	 funding	 from	 the	 European	 Union	 Seventh	
Framework	 Programme	 (FP7/2007-2013)	 through	 Project	 VALCRI,	 European	 Commission	 Grant	 Agreement	
Number	FP7-IP-608142,	awarded	to	Middlesex	University	and	partners.	

	

	 VALCRI	Partners	 Country	

1	 Middlesex	University	London	
Professor	B.L.	William	Wong,	Project	Coordinator	
Professor	Ifan	Shepherd,	Deputy	Project	Coordinator	

United	Kingdom	

2	 Space	Applications	Services	NV	
Mr	Rani	Pinchuck	

Belgium	

3	 Universitat	Konstanz	
Professor	Daniel	Keim	

Germany	

4	 Linkopings	Universitet	
Professor	Henrik	Eriksson	

Sweden	

5	 City	University	of	London	
Professor	Jason	Dykes	

United	Kingdom	

6	 Katholieke	Universiteit	Leuven	
Professor	Frank	Verbruggen	

Belgium	

7	 A	E	Solutions	(BI)	Limited	
Dr	Rick	Adderley	

United	Kingdom	

8	 Technische	Universitaet	Graz	
Professor	Dietrich	Albert	

Austria	

9	 Fraunhofer-Gesellschaft	Zur	Foerderung	Der	Angewandten	Forschung	E.V.	
Mr.	Patrick	Aichroft	

Germany	

10	 Technische	Universitaet	Wien	
Assoc.	Prof.	Margit	Pohl	

Austria	

11	 ObjectSecurity	Ltd	
Mr	Rudolf	Schriener	

United	Kingdom	

12	 Unabhaengiges	Landeszentrum	fuer	Datenschutz	
Dr	Marit	Hansen	

Germany	

13	 i-Intelligence	
Mr	Chris	Pallaris	

Switzerland	

14	 Exipple	Studio	SL	
Mr	German	Leon	

Spain	

15	 Lokale	Politie	Antwerpen	 Belgium	

16	 Belgian	Federal	Police	 Belgium	

17	 West	Midlands	Police	 United	Kingdom	

 
 
	
 
 
 


